Abstract
Abstract In this article, we address the Amit–Ashurst conjecture on lower bounds of a probability distribution associated to a word on a finite nilpotent group. We obtain an extension of a result of [R. D. Camina, A. Iñiguez and A. Thillaisundaram, Word problems for finite nilpotent groups, Arch. Math. (Basel) 115 (2020), 6, 599–609] by providing improved bounds for the case of finite nilpotent groups of class 2 for words in an arbitrary number of variables, and also settle the conjecture in some cases. We achieve this by obtaining words that are identically distributed on a group to a given word. In doing so, we also obtain an improvement of a result of [A. Iñiguez and J. Sangroniz, Words and characters in finite 𝑝-groups, J. Algebra 485 (2017), 230–246] using elementary techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.