Abstract
We represent the $105$ automorphic forms on the $5$-dimensional complex ball $\mathbb B^5$ constructed by Matsumoto-Terasoma as the products of four linear combinations of the pull backs of theta constants under an embedding of $\mathbb B^5$ into the Siegel upper half space of degree $6$. They were used to describe the inverse of the period map for the family of the $4$-fold coverings of the complex projective line branching at eight points.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.