Abstract

We introduce AutoMoDe: a novel approach to the automatic design of control software for robot swarms. The core idea in AutoMoDe recalls the approach commonly adopted in machine learning for dealing with the bias–variance tradedoff: to obtain suitably general solutions with low variance, an appropriate design bias is injected. AutoMoDe produces robot control software by selecting, instantiating, and combining preexisting parametric modules—the injected bias. The resulting control software is a probabilistic finite state machine in which the topology, the transition rules and the values of the parameters are obtained automatically via an optimization process that maximizes a task-specific objective function. As a proof of concept, we define AutoMoDe-Vanilla, which is a specialization of AutoMoDe for the e-puck robot. We use AutoMoDe-Vanilla to design the robot control software for two different tasks: aggregation and foraging. The results show that the control software produced by AutoMoDe-Vanilla (i) yields good results, (ii) appears to be robust to the so called reality gap, and (iii) is naturally human-readable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.