Abstract

The aim of this paper is to investigate whether the class of automaton semigroups is closed under certain semigroup constructions. We prove that the free product of two automaton semigroups that contain left identities is again an automaton semigroup. We also show that the class of automaton semigroups is closed under the combined operation of 'free product followed by adjoining an identity'. We present an example of a free product of finite semigroups that we conjecture is not an automaton semigroup. Turning to wreath products, we consider two slight generalizations of the concept of an automaton semigroup, and show that a wreath product of an automaton monoid and a finite monoid arises as a generalized automaton semigroup in both senses. We also suggest a potential counterexample that would show that a wreath product of an automaton monoid and a finite monoid is not a necessarily an automaton monoid in the usual sense.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.