Abstract
The modeling of random telegraph noise (RTN) of MOS transistors is becoming increasingly important. In this paper, a novel method is proposed for realizing automated estimation of two important RTN-model parameters: the number of interface-states and corresponding threshold voltage shift. The proposed method utilizes a Gaussian mixture model (GMM) to represent the voltage distributions, and estimates their parameters using the expectation-maximization (EM) algorithm. Using information criteria, the optimal estimation is automatically obtained while avoiding overfitting. In addition, we use a shared variance for all the Gaussian components in the GMM to deal with the noise in RTN signals. The proposed method improved estimation accuracy when the large measurement noise is observed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.