Abstract

Upcoming Low Level Radio Frequency (LLRF) systems for particle accelerators are facing manifold challenges. Special purpose machines like the X-Ray Free Electron Laser (XFEL) demand for field stabilities of 0.01% in amplitude and 0.01° in phase for the pulsed operation of superconducting, high-Q resonators. Due to the large number of parameters in a LLRF systems, automated procedures for parameter optimization will be essential. Apart from the field stability, manageability is an important topic. The International Linear Collider (ILC) will exceed the number of 20000 superconducting resonators and several hundred LLRF control loops. It is clear, that automation for this enormous amount of LLRF stations is inevitable. This document describes a systematic approach to implement several automation tasks using the technique of finite state machines (FSM). It is general enough to be applicable on various types of accelerators. A prototype of such an implementation is currently tested at the VUV-FEL at DESY, Hamburg. Some test results will be presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.