Abstract

This study examines the potential applications of Human Action Recognition (HAR) in combat sports and aims to develop a prototype automation client that examines a video of a combat sports competition or training session and accurately classifies human movements. Computer Vision (CV) architectures that examine real-time video data streams are being investigated by integrating Deep Learning architectures into client-server systems for data storage and analysis using customised algorithms. The development of the automation client for training and deploying CV robots to watch and track specific chains of human actions is a central component of the project. Categorising specific chains of human actions allows for the comparison of multiple athletes' techniques as well as the identification of potential areas for improvement based on posture, accuracy, and other technical details, which can be used as an aid to improve athlete efficiency. The automation client will also be developed for the purpose of scoring, with a focus on the automation of the CV model to analyse and score a competition using a specific ruleset. The model will be validated by comparing performance and accuracy to that of combat sports experts. The primary research domains are CV, automation, robotics, combat sports, and decision science. Decision science is a set of quantitative techniques used to assist people to make decisions. The creation of a new automation client may contribute to the development of more efficient machine learning and CV applications in areas such as process efficiency, which improves user experience, workload management to reduce wait times, and run-time optimisation. This study found that real-time object detection and tracking can be combined with real-time pose estimation to generate performance statistics from a combat sports athlete's movements in a video.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.