Abstract

The design of the automation system and the implemented operation control strategy in a stand-alone power system in Greece are fully analyzed in the present study. A photovoltaic array and three wind generators serve as the system main power sources and meet a predefined load demand. A lead-acid accumulator is used to compensate the inherent power fluctuations (excess or shortage) and to regulate the overall system operation, based on a developed power management strategy. Hydrogen is produced by using system excess power in a proton exchange membrane (PEM) electrolyzer and is further stored in pressurized cylinders for subsequent use in a PEM fuel cell in cases of power shortage. A diesel generator complements the integrated system and is employed only in emergency cases, such as subsystems failure. The performance of the automatic control system is evaluated through the real-time operation of the power system where data from the various subsystems are recorded and analyzed using a supervised data acquisition unit. Various network protocols were used to integrate the system devices into one central control system managing in this way to compensate for the differences between chemical and electrical subunits. One of the main advantages is the ability of process monitoring from distance where users can perform changes to system principal variables. Furthermore, the performance of the implemented power management strategy is evaluated through simulated scenarios by including a case study analysis on system abilities to meet higher than expected electrical load demands.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.