Abstract

Many cellular processes are organized in a compartmentalized and dynamic fashion to ensure effective adaptation to physiological changes. Thus, in response to stress and disease, cells initiate protective mechanisms to restore homeostasis. Among these mechanisms are the arrest of translation and remodeling of ribonucleoprotein complexes into granular compartments in the cytoplasm, known as stress granules (SGs). To date, the analysis of SGs has relied on the manual demarcation and measurement of the compartment, making quantitative studies time-consuming while preventing the efficient use of high-throughput technology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.