Abstract

While optical motion analysis systems can provide high-fidelity gait parameters, they are usually impractical for local clinics and home use, due to high cost, requirement for large space, and lack of portability. In this study, the authors focus on a cost-effective and portable, single-camera gait analysis solution, based on video acquisition with calibration, autonomous detection of frames-of-interest, Kalman-filter + structural-similarity-based marker tracking, and autonomous knee angle calculation. The proposed system is tested using 15 participants, including 10 stroke patients and 5 healthy volunteers. The evaluation of autonomous frames-of-interest detection shows only 0.2% difference between the frame number of the detected frame compared to the frame number of the manually labelled ground truth frame, and thus can replace manual labelling. The system is validated against a gold standard optical motion analysis system, using knee angle accuracy as metric of assessment. The accuracy investigation between the RGB- and the greyscale-video marker tracking schemes shows that the greyscale system suffers from negligible accuracy loss with a significant processing speed advantage. Experimental results demonstrate that the proposed system can automatically estimate the knee angle, with R-squared value larger than 0.95 and Bland-Altman plot results smaller than 3.0127° mean error.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.