Abstract
The design of instrument flight procedures (IFPs) is currently a manual process that is aided by automated application of IFP criteria to candidate designs. As the National Airspace System (NAS) transitions to performance-based navigation (PBN), these procedures, and their construction logic, are becoming increasingly complex. Today, procedure designers must manually balance input from a wide range of stakeholders, which can be a lengthy and suboptimal process.This paper describes a system to augment the capabilities of procedure designers by automating the design of optimal instrument flight procedures. This can be achieved by combining existing IFP criteria automation capabilities with optimization algorithms and large-scale compute resources and would improve the efficiency of the IFP design process across several common use cases. A proof-of-concept of an automated IFP design suggestion capability was developed and successfully generated valid IFPs in several challenging scenarios, proving the feasibility of the concept. Such a system has the potential to reduce the amount of time needed to implement a new or modified procedure, resulting in a more agile NAS that is more responsive to stakeholder objectives.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.