Abstract

Age estimation is a fundamental task in forensic anthropology for both the living and the dead. The procedure consists of analyzing properties such as appearance, ossification patterns, and morphology in different skeletonized remains. The pubic symphysis is extensively used to assess adults’ age-at-death due to its reliability. Nevertheless, most methods currently used for skeleton-based age estimation are carried out manually, even though their automation has the potential to lead to a considerable improvement in terms of economic resources, effectiveness, and execution time. In particular, explainable machine learning emerges as a promising means of addressing this challenge by engaging forensic experts to refine and audit the extracted knowledge and discover unknown patterns hidden in the complex and uncertain available data. In this contribution we address the automation of the decision making process of Todd’s pioneering age assessment method to assist the forensic practitioner in its application. To do so, we make use of the pubic bone data base available at the Physical Anthropology lab of the University of Granada. The machine learning task is significantly complex as it becomes an imbalanced ordinal classification problem with a small sample size and a high dimension. We tackle it with the combination of an ordinal classification method and oversampling techniques through an extensive experimental setup. Two forensic anthropologists refine and validate the derived rule base according to their own expertise and the knowledge available in the area. The resulting automatic system, finally composed of 34 interpretable rules, outperforms the state-of-the-art accuracy. In addition, and more importantly, it allows the forensic experts to uncover novel and interesting insights about how Todd’s method works, in particular, and the guidelines to estimate age-at-death from pubic symphysis characteristics, generally.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.