Abstract

The manufacturing processes of Fiber Reinforced Polymers (FRPs) as composite materials are frequently prone to the creation of various types of undesired morphologies and defects. These can include layer waviness, inclusions, and voids. Structural modeling for Finite Element Analysis (FEA) of structures including such morphologies and defects has not been practically realizable until recent developments in X-ray microtomography enabled the detection of such defects in a nondestructive manner. In the present work we present our initial steps toward the FEA modeling of FRP composite structures that leverage utilization of X-ray and regular digital imaging data as well as semi-automated methods for generating appropriate FEA models. Emphasis is given in defining waviness-driven curvilinear coordinate systems, defect identification and integration of both waviness and defects to FEA analysis including a planestrain application of a curved composite bracket under four-point bending conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.