Abstract

The ever-growing amount of dynamic graph data demands efficient techniques of incremental graph processing. However, incremental graph algorithms are challenging to develop. Existing approaches usually require users to manually design nontrivial incremental operators, or choose different memoization strategies for certain specific types of computation, limiting the usability and generality. In light of these challenges, we propose Ingress, an automated system for <u>in</u>cremental <u>g</u>raph proc<u>ess</u>ing. Ingress is able to incrementalize batch vertex-centric algorithms into their incremental counterparts as a whole, without the need of redesigned logic or data structures from users. Underlying Ingress is an automated incrementalization framework equipped with four different memoization policies, to support all kinds of vertex-centric computations with optimized memory utilization. We identify sufficient conditions for the applicability of these policies. Ingress chooses the best-fit policy for a given algorithm automatically by verifying these conditions. In addition to the ease-of-use and generalization, Ingress outperforms state-of-the-art incremental graph systems by 15.93X on average (up to 147.14X) in efficiency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.