Abstract

The performance of the MPI's collective communications is critical in most MPI-based applications. A general algorithm for a given collective communication operation may not give good performance on all systems due to the differences in architectures, network parameters and the storage capacity of the underlying MPI implementation. In this paper we discuss an approach in which the collective communications are tuned for a given system by conducting a series of experiments on the system. We also discuss a dynamic topology method that uses the tuned static topology shape, but re-orders the logical addresses to compensate for changing run time variations. A series of experiments were conducted comparing our tuned collective communication operations to various native vendor MPI implementations. The use of the tuned collective communications resulted in about 30 percent to 650 percent improvement in performance over the native MPI implementations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.