Abstract
We present a high-power (2.75 W), broadly tunable (2.75–3.83 μm) continuous-wave optical parametric oscillator based on MgO-doped periodically poled lithium niobate. Automated tuning of the pump laser, etalon and crystal temperature results in a continuous wavelength coverage up to 450 cm-1 per poling period at <5×10-4 cm-1 resolution. The versatility of the optical parametric oscillator as a coherent light source in trace-gas detection is demonstrated with photoacoustic and cavity ring-down spectroscopy. A 17-cm-1-wide CO2 spectrum at 2.8 μm and multi-component gas mixtures of methane, ethane and water in human breath were measured using photoacoustics. Methane (at 3.2 μm) and ethane (at 3.3 μm) were detected using cavity ring-down spectroscopy with detection limits of 0.16 and 0.07 parts per billion by volume, respectively. A recording of 12CH4 and 13CH4 isotopes of methane shows the ability to detect both species simultaneously at similar sensitivities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.