Abstract

This paper presents a novel automated procedure for discovering expressive shape specifications for sophisticated functional data structures. Our approach extracts potential shape predicates based on the definition of constructors of arbitrary user-defined inductive data types, and combines these predicates within an expressive first-order specification language using a lightweight data-driven learning procedure. Notably, this technique requires no programmer annotations, and is equipped with a type-based decision procedure to verify the correctness of discovered specifications. Experimental results indicate that our implementation is both efficient and effective, capable of automatically synthesizing sophisticated shape specifications over a range of complex data types, going well beyond the scope of existing solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.