Abstract

Bug-tracking systems are widely used by software developers to manage bug reports. Since it is time-consuming and costly to fix all the bugs, developers usually pay more attention to the bugs with higher impact, such as security bugs (i.e., vulnerabilities) which can be exploited by malicious users to launch attacks and cause great damages. However, manually identifying security bug reports from millions of reports in bug-tracking systems is difficult and error-prone. Furthermore, existing automated identification approaches to security bug reports often incur many false negatives, causing a hidden danger to the computer system. To address this important problem, we present an automatic security bug reports identification model via multitype features analysis, dubbed Security Bug Report Identifier (SBRer). Specifically, we make use of multiple kinds of information contained in a bug report, including meta features and textual features, to automatically identify the security bug reports via natural language processing and machine learning techniques. The experimental results show that SBRer with imbalanced data processing can successfully identify the security bug reports with a much higher precision of 99.4% and recall of 79.9% compared to existing work.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.