Abstract
The notion of Lyapunov function plays a key role in the design and verification of dynamical systems, as well as hybrid and cyber-physical systems. In this paper, to analyze the asymptotic stability of a dynamical system, we generalize standard Lyapunov functions to relaxed Lyapunov functions (RLFs), by considering higher order Lie derivatives. Furthermore, we present a method for automatically discovering polynomial RLFs for polynomial dynamical systems (PDSs). Our method is relatively complete in the sense that it is able to discover all polynomial RLFs with a given predefined template for any PDS. Therefore it can also generate all polynomial RLFs for the PDS by enumerating all polynomial templates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.