Abstract
Virtual network embedding arranges virtual network services onto substrate network components. The performance of embedding algorithms determines the effectiveness and efficiency of a virtualized network, making it a critical part of the network virtualization technology. To achieve better performance, the algorithm needs to automatically detect the network status which is complicated and changes in a time-varying manner, and to dynamically provide solutions that can best fit the current network status. However, most existing algorithms fail to provide automatic embedding solutions in an acceptable running time. In this paper, we combine deep reinforcement learning with a novel neural network structure based on graph convolutional networks, and propose a new and efficient algorithm for automatic virtual network embedding. In addition, a parallel reinforcement learning framework is used in training along with a newly-designed multi-objective reward function, which has proven beneficial to the proposed algorithm for automatic embedding of virtual networks. Extensive simulation results under different scenarios show that our algorithm achieves best performance on most metrics compared with the existing state-of-the-art solutions, with upto 39.6% and 70.6% improvement on acceptance ratio and average revenue, respectively. Moreover, the results also demonstrate that the proposed solution possesses good robustness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.