Abstract

To develop a fully automatic urinary stone detection system (kidney, ureter, and bladder) and to test it in a real clinical environment. The local institutional review board approved this retrospective single-center study that used non-enhanced abdominopelvic CT scans from patients admitted urology (uPatients) and emergency (ePatients). The uPatients were randomly divided into training and validation sets in a ratio of 3:1. We designed a cascade urinary stone map location-feature pyramid networks (USm-FPNs) and innovatively proposed a ureter distance heatmap method to estimate the ureter position on non-enhanced CT to further reduce the false positives. The performances of the system were compared using the free-response receiver operating characteristic curve and the precision-recall curve. This study included 811 uPatients and 356 ePatients. At stone level, the cascade detector USm-FPNs has the mean of false positives per scan (mFP) 1.88 with the sensitivity 0.977 in validation set, and mFP was further reduced to 1.18 with the sensitivity 0.977 after combining the ureter distance heatmap. At patient level, the sensitivity and precision were as high as 0.995 and 0.990 in validation set, respectively. In a real clinical set of ePatients (27.5% of patients contain stones), the mFP was 1.31 with as high as sensitivity 0.977, and the diagnostic time reduced by > 20% with the system help. A fully automatic detection system for entire urinary stones on non-enhanced CT scans was proposed and reduces obviously the burden on junior radiologists without compromising sensitivity in real emergency data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call