Abstract
The positioning of biological cells has become increasingly important in biomedical research such as drug discovery, cell-to-cell interaction, and tissue engineering. Significant demand for both accuracy and productivity in cell manipulation highlights the need for automated cell transportation with integrated robotics and micro/nano-manipulation technologies. Optical tweezers, which use highly focused low-power laser beams to trap and manipulate particles at the micro/nanoscale, can be treated as special robot ‘end-effectors’ to manipulate biological objects in a noninvasive way. In this paper, we propose to use a robot-tweezer manipulation system for automatic transportation of biological cells. A dynamics equation of the cell in an optical trap is analyzed. Closed-loop controllers are designed for positioning single cells as well as multiple cells. A synchronization control technology is utilized for multicell transportation with maintained cell pattern. Experiments are performed on transporting live cells to demonstrate the effectiveness of the proposed approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.