Abstract

This paper presents a method for automatic music transcription applied to audio recordings of a cappella performances with multiple singers. We propose a system for multi-pitch detection and voice assignment that integrates an acoustic and a music language model. The acoustic model performs spectrogram decomposition, extending probabilistic latent component analysis (PLCA) using a six-dimensional dictionary with pre-extracted log-spectral templates. The music language model performs voice separation and assignment using hidden Markov models that apply musicological assumptions. By integrating the two models, the system is able to detect multiple concurrent pitches in polyphonic vocal music and assign each detected pitch to a specific voice type such as soprano, alto, tenor or bass (SATB). We compare our system against multiple baselines, achieving state-of-the-art results for both multi-pitch detection and voice assignment on a dataset of Bach chorales and another of barbershop quartets. We also present an additional evaluation of our system using varied pitch tolerance levels to investigate its performance at 20-cent pitch resolution.

Highlights

  • Automatic music transcription (AMT) is one of the fundamental problems of music information retrieval and is defined as the process of converting an acoustic music signal into some form of music notation [1]

  • We have presented a system for multi-pitch detection and voice assignment for a cappella recordings of multiple singers

  • It consists of two integrated components: a probabilistic latent component analysis (PLCA)-based acoustic model and an hidden Markov model (HMM)-based music language model

Read more

Summary

Introduction

Automatic music transcription (AMT) is one of the fundamental problems of music information retrieval and is defined as the process of converting an acoustic music signal into some form of music notation [1]. A core problem of AMT is multi-pitch detection, the detection of multiple concurrent pitches from an audio recording. While much work has gone into the field of multi-pitch detection in recent years, it has frequently been constrained to instrumental music, most often piano recordings due to a wealth of available data. Spectrogram factorization methods have been used extensively in the last decade for multi-pitch detection [1]. These approaches decompose an input time-frequency representation (such as a spectrogram) into a linear combination of non-negative factors, often consisting of spectral atoms and note activations. The most successful of these spectrogram factorization methods have been based on non-negative matrix factorisation (NMF) [2] or probabilistic latent component analysis (PLCA) [3]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call