Abstract
Traffic anomaly detection is an essential part of an intelligent transportation system. Automatic traffic anomaly detection can provide sufficient decision-support information for road network operators, travelers, and other stakeholders. This research proposes a novel automatic traffic anomaly detection method based on spatial-temporal graph neural network representation learning. We divide traffic anomaly detection into two steps: first is learning the implicit graph feature representation of multivariate time series of traffic flows based on a graph attention model to predict the traffic states. Second, traffic anomalies are detected using graph deviation score calculation to compare the deviation of predicted traffic states with the observed traffic states. Experiments on real network datasets show that with an end-to-end workflow and spatial-temporal representation of traffic states, this method can detect traffic anomalies accurately and automatically and achieves better performance over baselines.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.