Abstract

Image segmentation plays an important role in multimodality imaging, especially in fusion structural images offered by CT, MRI with functional images collected by optical technologies, or other novel imaging technologies. In addition, image segmentation also provides detailed structural description for quantitative visualization of treating light distribution in the human body when incorporated with 3D light transport simulation methods. Here, we first use some preprocessing methods such as wavelet denoising to extract the accurate contours of different tissues such as skull, cerebrospinal fluid (CSF), grey matter (GM), and white matter (WM) on 5 MRI head image datasets. We then realize automatic image segmentation with deep learning by using convolutional neural network. We also introduce parallel computing. Such approaches greatly reduced the processing time compared to manual and semiautomatic segmentation and are of great importance in improving the speed and accuracy as more and more samples are being learned. The segmented data of grey and white matter are counted by computer in volume, which indicates the potential of this segmentation technology in diagnosing cerebral atrophy quantitatively. We demonstrate the great potential of such image processing and deep learning-combined automatic tissue image segmentation in neurology medicine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.