Abstract

Many communities along coastlines and riverbanks are threatened by water erosion and hence an accurate model to predict erosion events is needed in order to plan mitigation strategies. Such models need to rely on readily available meteorological data that may or may not be correlated with the occurrence of erosion events. Computing these correlations requires a quantified index that reports the magnitude of erosion events over time. This study introduces a method to create erosion indices using affordable consumer grade digital cameras. It is able to detect and quantify erosion using an image series obtained from just one such camera by segmenting each images instance into equally sized squares that can be preprocessed and analyzed separately. This approach isolates each image segment from noise and temporary disturbances that frequently occur throughout images taken with low cost cameras. In this fashion, noise may either be addressed locally or simply ignored if it is too extreme. After preprocessing, comparison of subsequent segments yields change matrices that form the basis for segment-specific erosion indices that are later combined into a composite value for the entire image instance. Whenever a segment instance is unavailable or unusable, the algorithm attempts to use neighboring instances whenever possible. When tested against human observation of erosion events during a 6 week period, the resulting index achieves a true positive rate of 67% while producing only a small number of false positives. Finally, the index is validated by significant correlation with various meteorological data streams.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.