Abstract

We demonstrate an automatic target recognition (ATR) scheme based on an improved photonic time-stretched coherent radar (PTS-CR). The reception apertures of the PTS-CR can cover the entire detection range by receiving the echo signal with high repetition rate pulses and increasing the amount of dispersion of the first dispersive medium in the receiver. Two channels with different stretching factors are simultaneously used to restore the signal delay information. Simulated and experimental results verify the feasibility of the new scheme. Finally, based on the improved receiving scheme, PTS-CR successfully performed ATR on four different targets placed on a rotating stage. Combining this with the training of the convolutional neural network (CNN), the recognition accuracy rate is 94.375%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.