Abstract
Vehicle detection from very-high-resolution satellite imagery has received increasing interest during the last few years. In this article, we propose an automatic system for operational traffic monitoring using very-high-resolution optical satellite imagery (0.5–0.6 m resolution) of small highways with low traffic density and a range of different illumination conditions, including cloud-shadowed, hazy, and partially cloudy conditions. The proposed system includes cloud and cloud shadow detection, road detection, and vehicle detection, classification, and counting. The main part of the system is vehicle detection, which is constructed using an elliptical blob detection strategy followed by region growing and feature extraction steps. Vehicular objects are separated from non-vehicular objects using a K-nearest-neighbour classifier, with various classical features used for pattern recognition, as well as some proposed application-specific features, and are also classified according to vehicle size. The fully automatic processing chain has been validated on a selection of satellite scenes from different parts of Norway, including imagery with large amounts of cloud, fog, cloud shadows, and similar conditions that complicate image interpretation. The overall vehicle detection rate was 85.4% and the false detection rate was 9.2%. Overall, this demonstrates the potential of operational traffic monitoring using very-high-resolution satellites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.