Abstract

Compositional reasoning aims to improve scalability of verification tools by reducing the original verification task into subproblems. The simplification is typically based on assume-guarantee reasoning principles, and requires user guidance to identify appropriate assumptions for components. In this paper, we propose a fully automated approach to compositional reasoning that consists of automated decomposition using a hypergraph partitioning algorithm for balanced clustering of variables, and discovering assumptions using the L * algorithm for active learning of regular languages. We present a symbolic implementation of the learning algorithm, and incorporate it in the model checker NuSmv. In some cases, our experiments demonstrate significant savings in the computational requirements of symbolic model checking.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.