Abstract

Augmented Reality (AR) is in high demand in medical applications. The aim of the paper is to provide automatic surgery using AR for the Transcatheter Aortic Valve Replacement (TAVR). TAVR is the alternate medical procedure for open-heart surgery. TAVR replaces the injured valve with the new one using a catheter. In the existing model, remote guidance is given, while the surgery is not automated based on AR. In this article, we deployed a spatially aligned camera that is connected to a motor for the automation of image capture in the surgical environment. The camera tracks the 2D high-resolution image of the patient's heart along with the catheter testbed. These captured images are uploaded using the mobile app to a remote surgeon who is a cardiology expert. This image is utilized for the 3D reconstruction from 2D image tracking. This is viewed in a HoloLens like an emulator in a laptop. The surgeon can remotely inspect the 3D reconstructed images with additional transformation features such as rotation and scaling. These transformation features are enabled through hand gestures. The surgeon's guidance is transmitted to the surgical environment to automate the process in real-time scenarios. The catheter testbed in the surgical field is controlled by the hand gesture guidance of the remote surgeon. The developed prototype model demonstrates the effectiveness of remote surgical guidance through AR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.