Abstract

We consider the automaticity of subsemigroups of free products of semigroups, proving that subsemigroups of free products, with all generators having length greater than one in the free product, are automatic. As a corollary, we show that if S is a free product of semigroups that are either finite or free, then any finitely generated subsemigroup of S is automatic. In particular, any finitely generated subsemigroup of a free product of finite or monogenic semigroups is automatic.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.