Abstract

Background and purposeComputed tomography (CT) is highly sensitive to lung-related abnormalities as a non-invasive method and has become an essential tool for screening and diagnosing Coronavirus disease 2019 (COVID-19). To reduce the stress of work for physicians and speed up diagnosis, we propose a novel automatic diagnosis pipeline for COVID-19 based on high-dimensional radiomic features extracted from multimodal CT scans (multi-geometric and multiscale). Materials and methodsThere are 746 CT scans involved in this study, where 349 CT scans are COVID-19 positive and 397 CT scans are COVID-19 negative. All of them are from the public dataset. We first construct a transfer learning-based auto-segmentation model with a morphological post-processing block to improve the lung region segmentation. Then the radiomics feature extraction is guided by the proposed multi-modal CT scans strategy. In addition, our automatic diagnosis pipeline is driven by a well-designed loss function. We also explain the diagnosis capability from the related theory of linear subspace spanned by multi-modal radiomics features. ResultsUnder the 10-fold cross-validation strategy, our approach can achieve an improvement in diagnostic performance of 5. 77%, 7. 78%, 7. 74%, 7. 78%, 7. 45% compared to the radiomic features extracted from the original CT scans, and diagnosis performance is promoted to 91.53%, 86.46%, 86.47%, 86.46%, 86.95% in terms of AUC, Acc, F1, Recall and Precision in public datasets. ConclusionsWe demonstrate a statistically significant improvement of the proposed statistical learning method compared to the state-of-the-art machine learning-based diagnosis approaches. Thanks to theoretical support and excellent diagnostic performance, our method can be deployed in clinical auxiliary diagnosis, releasing the overstretched medical resources.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call