Abstract
ABSTRACTLocal seismic event slopes contain subsurface velocity information and can be used to estimate seismic stacking velocity. In this paper, we propose a novel approach to estimate the stacking velocity automatically from seismic reflection data using similarity‐weighted k‐means clustering, in which the weights are local similarity between each trace in common midpoint gather and a reference trace. Local similarity reflects the local signal‐to‐noise ratio in common midpoint gather. We select the data points with high signal‐to‐noise ratio to be used in the velocity estimation with large weights in mapped traveltime and velocity domain by similarity‐weighted k‐means clustering with thresholding. By using weighted k‐means clustering, we make clustering centroids closer to those data points with large weights, which are more reliable and have higher signal‐to‐noise ratio. The interpolation is used to obtain the whole velocity volume after we have got velocity points calculated by weighted k‐means clustering. Using the proposed method, one obtains a more accurate estimate of the stacking velocity because the similarity‐based weighting in clustering takes into account the signal‐to‐noise ratio and reliability of different data points in mapped traveltime and velocity domain. In order to demonstrate that, we apply the proposed method to synthetic and field data examples, and the resulting images are of higher quality when compared with the ones obtained using existing methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.