Abstract

Automatic speech recognition is often formulated as a statistical pattern classification problem. Based on the optimal Bayes rule, two general approaches to classification exist; the generative approach and the discriminative approach. For more than two decades, generative classification with hidden Markov models (HMMs) has been the dominating approach for speech recognition (Rabiner, 1989). At the same time, powerful discriminative classifiers like support vector machines (Vapnik, 1995) and artificial neural networks (Bishop, 1995) have been introduced in the statistics and the machine learning literature. Despite immediate success in many pattern classification tasks, discriminative classifiers have only achieved limited success in speech recognition (Zahorian et al., 1997; Clarkson & Moreno, 1999). Two of the difficulties encountered are 1) speech signals have varying durations, whereas the majority of discriminative classifiers operate on fixed-dimensional vectors, and 2) the goal in speech recognition is to predict a sequence of labels (e.g., a digit string or a phoneme string) from a sequence of feature vectors without knowing the segment boundaries for the labels. On the contrary, most discriminative classifiers are designed to predict only a single class label for a given feature. In this chapter, we present a discriminative approach to speech recognition that can cope with both of the abovementioned difficulties. Prediction of a class label from a given speech segment (speech classification) is done using logistic regression incorporating a mapping from varying length speech segments into a vector of regressors. The mapping is general in that it can include any kind of segment-based information. In particular, mappings involving HMM log-likelihoods have been found to be powerful. Continuous speech recognition, where the goal is to predict a sequence of labels, is done with N-best rescoring as follows. For a given spoken utterance, a set of HMMs is used to generate an N-best list of competing sentence hypotheses. For each sentence hypothesis, the probability of each segment is found with logistic regression as outlined above. The segment probabilities for a sentence hypothesis are then combined along with a language model score in order to get a new score for the sentence hypothesis. Finally, the N-best list is reordered based on the new scores. O pe n A cc es s D at ab as e w w w .in te ch w eb .o rg

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call