Abstract
Automatic speech recognition (ASR) could potentially improve communication by providing transcriptions of speech in real time. ASR is particularly useful for people with progressive disorders that lead to reduced speech intelligibility or difficulties performing motor tasks. ASR services are usually trained on healthy speech and may not be optimized for impaired speech, creating a barrier for accessing augmented assistance devices. We tested the performance of three state-of-the-art ASR platforms on two groups of people with neurodegenerative disease and healthy controls. We further examined individual differences that may explain errors in ASR services within groups, such as age and sex. Speakers were recorded while reading a standard text. Speech was elicited from individuals with multiple sclerosis, Friedreich’s ataxia, and healthy controls. Recordings were manually transcribed and compared to ASR transcriptions using Amazon Web Services, Google Cloud, and IBM Watson. Accuracy was measured as the proportion of words that were correctly classified. ASR accuracy was higher for controls than clinical groups, and higher for multiple sclerosis compared to Friedreich’s ataxia for all ASR services. Amazon Web Services and Google Cloud yielded higher accuracy than IBM Watson. ASR accuracy decreased with increased disease duration. Age and sex did not significantly affect ASR accuracy. ASR faces challenges for people with neuromuscular disorders. Until improvements are made in recognizing less intelligible speech, the true value of ASR for people requiring augmented assistance devices and alternative communication remains unrealized. We suggest potential methods to improve ASR for those with impaired speech.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.