Abstract
A significant fraction of communications between air traffic controllers and pilots is through speech, via radio channels. Automatic transcription of air traffic control (ATC) communications has the potential to improve system safety, operational performance, and conformance monitoring, and to enhance air traffic controller training. We present an automatic speech recognition model tailored to the ATC domain that can transcribe ATC voice to text. The transcribed text is used to extract operational information such as call-sign and runway number. The models are based on recent improvements in machine learning techniques for speech recognition and natural language processing. We evaluate the performance of the model on diverse datasets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transportation Research Record: Journal of the Transportation Research Board
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.