Abstract

Based on purely spectral-domain prior knowledge taken from the remote sensing (RS) literature, an original spectral (fuzzy) rule-based per-pixel classifier is proposed. Requiring no training and supervision to run, the proposed spectral rule-based system is suitable for the preliminary classification (primal sketch, in the Marr sense) of Landsat-5 Thematic Mapper and Landsat-7 Enhanced Thematic Mapper Plus images calibrated into planetary reflectance (albedo) and at-satellite temperature. The classification system consists of a modular hierarchical top-down processing structure, which is adaptive to image statistics, computationally efficient, and easy to modify, augment, or scale to other sensors' spectral properties, like those of the Advanced Spaceborne Thermal Emission and Reflection Radiometer and of the Satellite Pour l'Observation de la Terre (SPOT-4 and -5). As output, the proposed system detects a set of meaningful and reliable fuzzy spectral layers (strata) consistent (in terms of one-to-one or many-to-one relationships) with land cover classes found in levels I and II of the U.S. Geological Survey classification scheme. Although kernel spectral categories (e.g., strong vegetation) are detected without requiring any reference sample, their symbolic meaning is intermediate between those (low) of clusters and segments and those (high) of land cover classes (e.g., forest). This means that the application domain of the kernel spectral strata is by no means alternative to RS data clustering, image segmentation, and land cover classification. Rather, prior knowledge-based kernel spectral categories are naturally suitable for driving stratified application-specific classification, clustering, or segmentation of RS imagery that could involve training and supervision. The efficacy and robustness of the proposed rule-based system are tested in two operational RS image classification problems

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.