Abstract

Point pattern sets arise in many different areas of physical, biological, and applied research, representing many random realizations of underlying pattern formation mechanisms. These pattern sets can be heterogeneous with respect to underlying spatial processes, which may not be visually distiguishable. This heterogeneity can be elucidated by looking at statistical measures of the patterns sets and using these measures to divide the pattern sets into distinct groups representing like spatial processes. We introduce here a numerical procedure for sorting point pattern sets into spatially homogenous groups using functional principal component analysis (FPCA) applied to the approximated Minkowski functionals of each pattern. We demonstrate that this procedure correctly sorts pattern sets into similar groups both when the patterns are drawn from similar processes and when the second-order characteristics of the pattern are identical. We highlight this routine for distinguishing the molecular patterning of fluorescently labeled cell membrane proteins, a subject of much interest in studies investigating complex spatial signaling patterns involved in the human immune response.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.