Abstract

BackgroundSleep scoring is an essential but time-consuming process, and therefore automatic sleep scoring is crucial and urgent to help address the growing unmet needs for sleep research. This paper aims to develop a versatile deep-learning architecture to automate sleep scoring using raw polysomnography recordings. MethodThe model adopts a linear function to address different numbers of inputs, thereby extending model applications. Two-dimensional convolution neural networks are used to learn features from multi-modality polysomnographic signals, a “squeeze and excitation” block to recalibrate channel-wise features, together with a long short-term memory module to exploit long-range contextual relation. The learnt features are finally fed to the decision layer to generate predictions for sleep stages. ResultModel performance is evaluated on three public datasets. For all tasks with different available channels, our model achieves outstanding performance not only on healthy subjects but even on patients with sleep disorders (SHHS: Acc-0.87, K-0.81; ISRUC: Acc-0.86, K-0.82; Sleep-EDF: Acc-0.86, K-0.81). The highest classification accuracy is achieved by a fusion of multiple polysomnographic signals. ComparisonCompared to state-of-the-art methods that use the same dataset, the proposed model achieves a comparable or better performance, and exhibits low computational cost. ConclusionsThe model demonstrates its transferability among different datasets, without changing model architecture or hyper-parameters across tasks. Good model transferability promotes the application of transfer learning on small group studies with mismatched channels. Due to demonstrated availability and versatility, the proposed method can be integrated with diverse polysomnography systems, thereby facilitating sleep monitoring in clinical or routine care.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.