Abstract

3d reconstruction from a single image is inherently an ambiguous problem. Yet when we look at a picture, we can often infer 3d information about the scene. Humans perform single-image 3d reconstructions by using a variety of single-image depth cues, for example, by recognizing objects and surfaces, and reasoning about how these surfaces are connected to each other. In this paper, we focus on the problem of automatic 3d reconstruction of indoor scenes, specifically ones (sometimes called “Manhattan worlds”) that consist mainly of orthogonal planes. We use a Markov random field (MRF) model to identify the different planes and edges in the scene, as well as their orientations. Then, an iterative optimization algorithm is applied to infer the most probable position of all the planes, and thereby obtain a 3d reconstruction. Our approach is fully automatic—given an input image, no human intervention is necessary to obtain an approximate 3d reconstruction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.