Abstract
The automatic format-setting of journal articles for reducing the workload of computer users involves two processes: automatic acquisition of article format and automatic recall of article formal. Several neural networks have been explored to implement the two processes. The advantages and disadvantages of these neural networks are evaluated in comparison with capabilities of conventional computer programs. A heteroassociative back-propagation network has been developed for the automatic acquisition process. This network excels over computer programs because of its abilities in learning and generalizing implicit knowledge from examples. A bidirectional associative memory network, a Boltzman network, and an autoassociative back-propagation network have been investigated for the automatic recall process. None of them excel over computer programs in terms of recall accuracy.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Human–Computer Interaction
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.