Abstract
Advances in sensor technology and the possibility of automated long distance data transmission have made continuous measurements the preferable way of monitoring urban drainage processes. Usually, the collected data have to be processed by an expert in order to detect and mark the wrong data, remove them and replace them with interpolated data. In general, the first step in detecting the wrong, anomaly data is called the data quality assessment or data validation. Data validation consists of three parts: data preparation, validation scores generation and scores interpretation. This paper will present the overall framework for the data quality improvement system, suitable for automatic, semi-automatic or manual operation. The first two steps of the validation process are explained in more detail, using several validation methods on the same set of real-case data from the Belgrade sewer system. The final part of the validation process, which is the scores interpretation, needs to be further investigated on the developed system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.