Abstract

PurposeFor patients affected by autosomal-dominant polycystic kidney disease (ADPKD), successful differentiation of cysts is useful for automatic classification of patient phenotypes, clinical decision-making, and disease progression. The objective was to develop and evaluate a fully automated semantic segmentation method to differentiate and analyze renal cysts in patients with ADPKD.MethodsAn automated deep learning approach using a convolutional neural network was trained, validated, and tested on a set of 60 MR T2-weighted images. A three-fold cross-validation approach was used to train three models on distinct training and validation sets (n = 40). An ensemble model was then built and tested on the hold out cases (n = 20), with each of the cases compared to manual segmentations performed by two readers. Segmentation agreement between readers and the automated method was assessed.ResultsThe automated approach was found to perform at the level of interobserver variability. The automated approach had a Dice coefficient (mean ± standard deviation) of 0.86 ± 0.10 vs Reader-1 and 0.84 ± 0.11 vs. Reader-2. Interobserver Dice was 0.86 ± 0.08. In terms of total cyst volume (TCV), the automated approach had a percent difference of 3.9 ± 19.1% vs Reader-1 and 8.0 ± 24.1% vs Reader-2, whereas interobserver variability was − 2.0 ± 16.4%.ConclusionThis study developed and validated a fully automated approach for performing semantic segmentation of kidney cysts in MR images of patients affected by ADPKD. This approach will be useful for exploring additional imaging biomarkers of ADPKD and automatically classifying phenotypes.

Highlights

  • Autosomal-dominant polycystic kidney disease (ADPKD) is the most common hereditary renal disease, affecting roughly 12 million people worldwide, and is currently the fourth leading cause of kidney failure [1, 2]. Its pathology is such that the continuous growth of cysts causes a progressive increase in total kidney volume (TKV)

  • The MR images were coronal single shot fast spin echo (SSFSE) T2 sequences, acquired with a GE scanner, with matrix size 256 × 256xZ

  • There was no significant difference between the training, validation, and testing datasets in terms of disease severity (i.e., TKV)

Read more

Summary

Introduction

Autosomal-dominant polycystic kidney disease (ADPKD) is the most common hereditary renal disease, affecting roughly 12 million people worldwide, and is currently the fourth leading cause of kidney failure [1, 2]. Its pathology is such that the continuous growth of cysts causes a progressive increase in total kidney volume (TKV). A typical ADPKD patient exhibits progressive renal function decline and roughly 70% progress to end-stage renal disease between age 40 and age 70 [3, 4]. Longitudinal studies have found that over time, patients with ADPKD experience an increase in TKV and cyst volume and a decrease in total parenchyma volume suggesting that the non-cystic kidney tissue is being replaced by more cysts

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call