Abstract
The automatic segmentation of intervertebral discs from medical images is an important task for an intelligent clinical system. In this study, a deep learning model based on the MultiResUNet model for the automatic segmentation of specific intervertebral discs is presented. MultiResUNet can easily segment all intervertebral discs in MRI images; however, when only certain specific intervertebral discs need to be segmented, problems with segmentation errors, misalignment, and noise occur. In order to solve these problems, a two-stage MultiResUNet model is proposed. Connected-component labeling, automatic cropping, and distance transform are used in the proposed method. The experimental results show that the segmentation errors and misalignments of specific intervertebral discs are greatly reduced, and the segmentation accuracy is increased to about 94%. The performance of the proposed method proves its usefulness for the automatic segmentation of specific intervertebral discs over other deep learning models, such as the U-Net, CNN-based, Attention U-Net, and MultiResUNet models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.