Abstract
Accurate measurement of the right ventricle (RV) volume is important for the assessment of the ventricular function and a biomarker of the progression of any cardiovascular disease. However, the high RV variability makes difficult a proper delineation of the myocardium wall. This paper introduces a new automatic method for segmenting the RV volume from short axis cardiac magnetic resonance (MR) images by a salient analysis of temporal and spatial observations. The RV volume estimation starts by localizing the heart as the region with the most coherent motion during the cardiac cycle. Afterward, the ventricular chambers are identified at the basal level using the isodata algorithm, the right ventricle extracted, and its centroid computed. A series of radial intensity profiles, traced from this centroid, is used to search a salient intensity pattern that models the inner-outer myocardium boundary. This process is iteratively applied toward the apex, using the segmentation of the previous slice as a regularizer. The consecutive 2D segmentations are added together to obtain the final RV endocardium volume that serves to estimate also the epicardium. Experiments performed with a public dataset, provided by the RV segmentation challenge in cardiac MRI, demonstrated that this method is highly competitive with respect to the state of the art, obtaining a Dice score of 0.87, and a Hausdorff distance of 7.26 mm while a whole volume was segmented in about 3 s. The proposed method provides an useful delineation of the RV shape using only the spatial and temporal information of the cine MR images. This methodology may be used by the expert to achieve cardiac indicators of the right ventricle function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.