Abstract

Background and ObjectiveAccurately and reliably defining organs at risk (OARs) and tumors are the cornerstone of radiation therapy (RT) treatment planning for lung cancer. Almost all segmentation networks based on deep learning techniques rely on fully annotated data with strong supervision. However, existing public imaging datasets encountered in the RT domain frequently include singly labelled tumors or partially labelled organs because annotating full OARs and tumors in CT images is both rigorous and tedious. To utilize labelled data from different sources, we proposed a dual-path semi-supervised conditional nnU-Net for OARs and tumor segmentation that is trained on a union of partially labelled datasets. MethodsThe framework employs the nnU-Net as the base model and introduces a conditioning strategy by incorporating auxiliary information as an additional input layer into the decoder. The conditional nnU-Net efficiently leverages prior conditional information to classify the target class at the pixelwise level. Specifically, we employ the uncertainty-aware mean teacher (UA-MT) framework to assist in OARs segmentation, which can effectively leverage unlabelled data (images from a tumor labelled dataset) by encouraging consistent predictions of the same input under different perturbations. Furthermore, we individually design different combinations of loss functions to optimize the segmentation of OARs (Dice loss and cross-entropy loss) and tumors (Dice loss and focal loss) in a dual path. ResultsThe proposed method is evaluated on two publicly available datasets of the spinal cord, left and right lung, heart, esophagus, and lung tumor, in which satisfactory segmentation performance has been achieved in term of both the region-based Dice similarity coefficient (DSC) and the boundary-based Hausdorff distance (HD). ConclusionsThe proposed semi-supervised conditional nnU-Net breaks down the barriers between nonoverlapping labelled datasets and further alleviates the problem of “data hunger” and “data waste” in multi-class segmentation. The method has the potential to help radiologists with RT treatment planning in clinical practice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.