Abstract
Magnetic resonance imaging (MRI) segmentation is a complex issue. This paper proposes a new method for estimating the right number of segments and automatic segmentation of human normal and abnormal MR brain images. The purpose of automatic diagnosis of the segments is to find the number of divided image areas of an image according to its entropy and with correctly diagnose of the segment of an image also increased the precision of segmentation. Regarding the fact that guessing the number of image segments and the center of segments automatically requires algorithm test many states in order to solve this problem and to have a high accuracy, we used a combination of the genetic algorithm and the fuzzy c-means (FCM) method. In this method, it has been tried to change the FCM method as a fitness function for combination of it in genetic algorithm to do the image segmentation more accurately. Our experiment shows that the proposed method has a significant improvement in the accuracy of image segmentation in comparison to similar methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.