Abstract

Accurate segmentation of infant hippocampus from Magnetic Resonance (MR) images is one of the key steps for the investigation of early brain development and neurological disorders. Since the manual delineation of anatomical structures is time-consuming and irreproducible, a number of automatic segmentation methods have been proposed, such as multi-atlas patch-based label fusion methods. However, the hippocampus during the first year of life undergoes dynamic appearance, tissue contrast and structural changes, which pose substantial challenges to the existing label fusion methods. In addition, most of the existing label fusion methods generally segment target images at each time-point independently, which is likely to result in inconsistent hippocampus segmentation results along different time-points. In this paper, we treat a longitudinal image sequence as a whole, and propose a spatial-temporal hypergraph based model to jointly segment infant hippocampi from all time-points. Specifically, in building the spatial-temporal hypergraph, (1) the atlas-to-target relationship and (2) the spatial/temporal neighborhood information within the target image sequence are encoded as two categories of hyperedges. Then, the infant hippocampus segmentation from the whole image sequence is formulated as a semi-supervised label propagation model using the proposed hypergraph. We evaluate our method in segmenting infant hippocampi from T1-weighted brain MR images acquired at the age of 2 weeks, 3 months, 6 months, 9 months, and 12 months. Experimental results demonstrate that, by leveraging spatial-temporal information, our method achieves better performance in both segmentation accuracy and consistency over the state-of-the-art multi-atlas label fusion methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.