Abstract
Objective. Precise hepatocellular carcinoma (HCC) detection is crucial for clinical management. While studies focus on computed tomography-based automatic algorithms, there is a rareness of research on automatic detection based on dynamic contrast enhanced (DCE) magnetic resonance imaging. This study is to develop an automatic detection and segmentation deep learning model for HCC using DCE. Approach: DCE images acquired from 2016 to 2021 were retrospectively collected. Then, 382 patients (301 male; 81 female) with 466 lesions pathologically confirmed were included and divided into an 80% training-validation set and a 20% independent test set. For external validation, 51 patients (42 male; 9 female) in another hospital from 2018 to 2021 were included. The U-net architecture was modified to accommodate multi-phasic DCE input. The model was trained with the training-validation set using five-fold cross-validation, and furtherly evaluated with the independent test set using comprehensive metrics for segmentation and detection performance. The proposed automatic segmentation model consisted of five main steps: phase registration, automatic liver region extraction using a pre-trained model, automatic HCC lesion segmentation using the multi-phasic deep learning model, ensemble of five-fold predictions, and post-processing using connected component analysis to enhance the performance to refine predictions and eliminate false positives. Main results. The proposed model achieved a mean dice similarity coefficient (DSC) of 0.81 ± 0.11, a sensitivity of 94.41 ± 15.50%, a precision of 94.19 ± 17.32%, and 0.14 ± 0.48 false positive lesions per patient in the independent test set. The model detected 88% (80/91) HCC lesions in the condition of DSC > 0.5, and the DSC per tumor was 0.80 ± 0.13. In the external set, the model detected 92% (58/62) lesions with 0.12 ± 0.33 false positives per patient, and the DSC per tumor was 0.75 ± 0.10. Significance. This study developed an automatic detection and segmentation deep learning model for HCC using DCE, which yielded promising post-processed results in accurately identifying and delineating HCC lesions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.