Abstract

A novel dermoscopy image segmentation algorithm is proposed using a combination of a self-generating neural network (SGNN) and the genetic algorithm (GA). Optimal samples are selected as seeds using GA; taking these seeds as initial neuron trees, a self-generating neural forest (SGNF) is generated by training the rest of the samples using SGNN. Next the number of clusters is determined by optimizing the SD index of cluster validity, and clustering is completed by treating each neuron tree as a cluster. Since SGNN often delivers inconsistent cluster partitions owing to sensitivity relative to the input order of the training samples, GA is combined with SGNN to optimize and stabilize the clustering result. In the post-processing phase, the clusters are merged into lesion and background skin, yielding the segmented dermoscopy image. A series of experiments on the proposed model and the other automatic segmentation methods (including Otsu's thresholding method, k-means, fuzzy c-means (FCM) and statistical region merging (SRM)) reveals that the optimized model delivers better accuracy and segmentation results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.